Effect of monovalent cations on Na+/Ca2+ exchange and ATP-dependent Ca2+ transport in synaptic plasma membranes.
نویسندگان
چکیده
Two Ca2+ transport systems were investigated in plasma membrane vesicles isolated from sheep brain cortex synaptosomes by hypotonic lysis and partial purification. Synaptic plasma membrane vesicles loaded with Na+ (Na+i) accumulate Ca2+ in exchange for Na+, provided that a Na+ gradient (in leads to out) is present. Agents that dissipate the Na+ gradient (monensin) prevent the Na+/Ca2+ exchange completely. Ca2+ accumulated by Na+/Ca2+ exchange can be released by A 23187, indicating that Ca2+ is accumulated intravesicularly. In the absence of any Na+ gradient (K+i-loaded vesicles), the membrane vesicles also accumulate Ca2+ owing to ATP hydrolysis. Monovalent cations stimulate Na+/Ca2+ exchange as well as the ATP-dependent Ca2+ uptake activity. Taking the value for Na+/Ca2+ exchange in the presence of choline chloride (external cation) as reference, other monovalent cations in the external media have the following effects: K+ or NH4+ stimulates Na+/Ca2+ exchange; Li+ or Cs+ inhibits Na+/Ca2+ exchange. The ATP-dependent Ca2+ transport system is stimulated by increasing K+ concentrations in the external medium (Km for K+ is 15 mM). Replacing K+ by Na+ in the external medium inhibits the ATP-dependent Ca2+ uptake, and this effect is due more to the reduction of K+ than to the elevation of Na+. The results suggest that synaptic membrane vesicles isolated from sheep brain cortex synaptosomes possess mechanisms for Na+/Ca2+ exchange and ATP-dependent Ca2+ uptake, whose activity may be regulated by monovalent cations, specifically K+, at physiological concentrations.
منابع مشابه
Calcium transport mechanisms in membrane vesicles from guinea pig brain synaptosomes.
Ca2+ transport mechanisms were investigated using membrane vesicles prepared from guinea pig brain synaptosomes by hypotonic lysis. Two major mechanisms of Ca2+ transport exist, Na+-Ca2+ exchange and ATP-dependent Ca2+ uptake. A third although minor component of Ca2+ uptake occurs under hyperpolarizing conditions (determined by increased uptake of [3H]tetraphenylphosphonium+). Na+-Ca2+ exchange...
متن کاملActivation of calcium transport in skeletal muscle sarcoplasmic reticulum by monovalent cations.
The rates of calcium transport and Ca2+-dependent ATP hydrolysis by rabbit skeletal muscle sarcoplasmic reticulum were stimulated by monovalent cations. The rate of decomposition of phosphoprotein intermediate of the Ca2+-dependent ATPase of sarcoplasmic reticulum was also increased by these ions to an extent that is sufficient to account for the stimulation of calcium transport and Ca2+-depend...
متن کاملThe renal Na+/Ca2+ exchange system is located exclusively in the distal tubule.
The movement of Ca2+ across the basolateral plasma membrane was determined in purified preparations of this membrane isolated from rabbit proximal and distal convoluted tubules. The ATP-dependent Ca2+ uptake was present in basolateral membranes from both these tubular segments, but the activity was higher in the distal tubules. A very active Na+/Ca2+ exchange system was also demonstrated in the...
متن کاملAsymmetrical properties of the Na-Ca exchanger in voltage-clamped, internally dialyzed squid axons under symmetrical ionic conditions
In this work we have investigated whether the asymmetrical properties of the Na/Ca exchange process found in intact preparations are intrinsic to the exchange protein(s) or the result of the asymmetric ionic environment normally prevailing in living cells. The activation of the Na/Ca exchanger by Ca2+ ions, monovalent cations, ATP gamma S and the effect of membrane potential on the different op...
متن کاملCalcium transport and monovalent cation and proton fluxes in sarcoplasmic reticulum vesicles.
ATP-dependent Ca2+ uptake by rabbit skeletal muscle sarcoplasmic reticulum vesicles has been studied in the presence and absence of artificially generated pH gradients and membrane potentials. H+ and K+ diffusion potentials were generated via the H+ and K,Na channels of sarcoplasmic reticulum by transfer of vesicles from low to high pH, or from high to low K+. Membrane potentials were measured ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurochemistry
دوره 41 3 شماره
صفحات -
تاریخ انتشار 1983